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a b s t r a c t

Free vibration analysis of annular moderately thick plates integrated with piezoelectric

layers is investigated in this study for different combinations of soft simply supported,

hard simply supported and clamped boundary conditions at the inner and outer edges

of the annular plate on the basis of the Levinson plate theory (LPT). The distribution of

sinusoidal function so that the Maxwell static electricity equation is approximately

satisfied. The differential equations of motion are solved analytically for various

boundary conditions of the plate. In this study the closed-form solution for

characteristic equations, displacement components of the plate and electric potential

are derived for the first time in the literature. To demonstrate the accuracy of the

present solution, comparison studies is first carried out with the available data in the

literature and then natural frequencies of the piezoelectric coupled annular plate are

presented for different thickness-radius ratios, inner–outer radius ratios, thickness of

piezoelectric, material of piezoelectric and boundary conditions. Present analytical

model provides design reference for piezoelectric material application, such as sensors,

actuators and ultrasonic motors.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Annular plates are often found in the construction of various structural systems, including civil, mechanical, space
structures, electronic components, marine structures and nuclear engineering. A good understanding of the dynamic
behaviors for these structural components is crucial to the design and performance evaluation of mechanical systems.
A vast amount of literature for free vibration studies of circular and annular plates is available. Many studies on this subject
have been experimentally and theoretically carried out by many researchers such as Leissa [1], Irie et al. [2], So and Leissa
[3], Liew and Yang [4], Efraim and Eisenberger [5], Liu and Lee [6] and Zhou et al. [7].

The classical plate theory (CPT) furnishes accurate and reliable solutions for most thin plate analysis. When plate
thickness increases, CPT over predicts vibration response because transverse shear deformation and rotary inertia effects
are neglected. As a natural extension, first-order theory and higher-order theory were developed to incorporate the shear
deformation effect. These theories can be applied to moderately thick plate analysis to overcome the drawback of CPT.
Using of higher-order plate theories generally leads to a more accurate prediction of the global response quantities such as
deflections, buckling loads, and natural frequencies especially in thick plates.
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The first-order shear deformation plate theory was proposed by Reissner [8], and developed further for the deformable
plates in statics and dynamics by Mindlin et al. [9,10]. In the Mindlin theory, the constant shear stress condition violates
the statical condition of zero shear stress at the free surfaces. To compensate for the error, Mindlin introduces shear
correction factors to modify the shear forces. A more sophisticated plate theory proposed by Reddy [11] assumes the
normal to bend in a form of a cubic curve that ensures the satisfaction of zero shear strain at the free surfaces of the plate.
Levinson [12] presented an accurate simple theory for the static and dynamic analysis of rectangular plates. He used a
vector approach to derive his equations of equilibrium of homogeneous plates. Levinson plate theory serves as a
compromise between the Mindlin plate theory and the Reddy plate theory. The theory captures the higher-order effect by
assuming the same third-order polynomials in the expansion of the in-plane displacement components as in the Reddy
plate theory and therefore it avoids the need of a shear correction factor. Moreover, its total order of governing equation
remains at the fourth order level that is similar to both the Mindlin and the classical thin plate theories whereas the total
order of governing equation of the Reddy plate theory is six. The Levinson theory has these features because it neglects the
higher-order moments and higher-order shear forces that appear in the variational formulation of the Reddy plate theory.
Wang and Kitipornchai [13] presented an exact frequency relationship between Levinson plate theory and Kirchhoff plate
theory for homogeneous plates of general polygonal shape and simply supported edges. Reddy et al. [14] derived the exact
relationships between the bending solutions of the Levinson and Kirchhoff beam and plate theories based on the load
equivalence and mathematical similarity of the governing equations of the both mentioned theories. A comprehensive
work on edge-zone equation of linear and non-linear shear deformation theories of symmetric laminated plates was done
by Nosier and Reddy [15,16].

Due to the widespread use of the piezoelectric materials in sensors and actuators, the study of embedded or surface-
mounted piezoelectric materials has received considerable attention in recent years. Tiersten [17] formulated the
governing equations for the vibration of piezoelectric plates and investigated their fundamental electro-mechanical
behavior. The general solutions for the dynamic equations of a transversely isotropic piezoelectric medium were
investigated by Ding et al. [18]. Wang et al. [19] and Liu et al. [20] analyzed the free vibration of a piezoelectric coupled
thin and thick circular plate. Their hypotheses that the distribution of electric potential along the thickness direction in the
piezoelectric layer is simulated by a sinusoidal function were validated by FE analysis and analytical solutions satisfying
Maxwell static electricity equation were presented. Duan et al. [21] used the Mindlin plate theory (MPT) to investigate the
free vibration analysis of piezoelectric coupled thin and thick annular plate. Liu et al. [22] reported a modified
axisymmetric finite element for the 3-D vibration analysis of piezoelectric laminated circular and annular plates. Zhang
and Sun [23] conducted a study on the analysis of a sandwich plate structure containing a piezoelectric core, where an
electric field in the thickness direction may generate shear deformation within the core.

To distinguish the present work from those available in the literature, the main objective of this paper is to present a
closed-form solution for the free vibration analysis of piezoelectric coupled moderately thick annular plates with different
combinations of soft simply supported, hard simply supported and clamped boundary conditions at the inner and outer
edges by using the Levinson plate theory. The solutions can also serve as benchmarks for validations of numerical
techniques. First, results obtained by the present solution are compared with existing numerical data. Second, the effect of
plate parameters such as thickness-radius ratios, inner–outer radius ratios, as well as boundary conditions and
piezoelectric parameters such as thickness of piezoelectric and material of piezoelectric on natural frequencies of the plate
is comprehensively investigated. Finally, some 3-D mode shapes of the annular Levinson plates coupled with Piezoelectric
are illustrated.

2. Constitutive relations for a piezoelectric sandwich plate based on LPT

2.1. Displacement field

Consider a thick laminated annular plate consisting of one host layer and two piezoelectric layers with outer radius r0,
inner radius r1, host layer thickness 2h and piezoelectric layer thickness hp. Both top and bottom surfaces of each
piezoelectric layer are fully covered by electrodes that are shortly connected. As depicted in Fig. 1 both piezoelectric layers
are polarized perpendicular to the mid-plane in the positive direction of the z-axis. The plate geometry and dimensions are
defined in an orthogonal cylindrical coordinate system ðr; y; zÞ. In the Levinson plate theory, the displacement components
are assumed to be given by

uðr;y; z; tÞ ¼ u0ðr; y; tÞþzcrðr; y; tÞ�
1

3ðhþhpÞ
2

z3 crðr; y; tÞþ
qwðr; y; tÞ

qr

� �
;

vðr; y; z; tÞ ¼ v0ðr; y; tÞþzcyðr; y; tÞ�
1

3ðhþhpÞ
2

z3 cyðr; y; tÞþ
qwðr; y; tÞ

rqy

� �
;

wðr; y; tÞ ¼w0ðr; y; tÞ; (1a2c)

where w, u, and v are the displacements in the transverse, radial and tangential direction of the plate, respectively; u0 and
v0 denote the in-plane displacements on mid-plane and w0 is transverse displacement on mid-plane; cr and cy are the
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Fig. 1. Sketch of an annular plate surface mounted with two piezoelectric layers.
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slope rotations in the r�z and y�z planes at z¼ 0, respectively, and t is the time. In this study, since the flexural vibration of
the plate can only be studied, the in-plane displacements u0 and v0 are omitted. For simplicity, the notation w is used for
w0 in the following derivation of the governing equations of plate.

2.2. Strain and stress field in sandwich plate

The strain components of the host plate and piezoelectric layer are given by

er ¼
qu

qr
; ey ¼

u

r
þ

qv

rqy
; ez ¼ 0; (2a2c)

ery ¼
qv

qr
þ

qu

rqy
�

v

r
; erz ¼

qu

qz
þ

qw

qr
; eyz ¼

qv

qz
þ

qw

rqy
; (2d2f)

where qð�Þ=qr (� ¼ u;v and w), for example, denotes the partial derivative with respect to r; er and ey are the normal strains
and ery, erz and eyz are the shear strains.

The stress components in the host plate are expressed as

sh
r ¼

E

1�n2
ðerþneyÞ;

sh
y ¼

E

1�n2
ðeyþnerÞ;

th
ry ¼

E

2ð1þnÞ
ery;

th
rz ¼

E

2ð1þnÞ erz;

th
yz ¼

E

2ð1þnÞ eyz; (3a2e)

where the superscript h represents the variables in the host structure, E and n are the Young’s modulus and Poisson ratio of
the host material, respectively. The constitutive relations in the piezoelectric layer are written as

sE
r ¼ C

E

11erþC
E

12ey�e31Ez;

sE
y ¼ C

E

12erþC
E

11ey�e31Ez;

tE
ry ¼

1
2ðC

E

11�C
E

12Þery;

tE
rz ¼ CE

55erzþe15Er ;

tE
yz ¼ CE

55eyzþe15Ey; (4a2e)

where the superscript E represents the variables in the piezoelectric material; C
E

11;C
E

12 and e31 are the reduced material
constants of the piezoelectric medium for plane stress problems given by

C
E

12 ¼ CE
12�ððC

E
13Þ

2=CE
33Þ;
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C
E

11 ¼ CE
11�ððC

E
13Þ

2=CE
33Þ;

e31 ¼ e31�ðC
E
13e33=CE

33Þ; (5a2c)

where CE
11;C

E
12;C

E
13;C

E
33 and CE

55 are the module of elasticity under constant electric field, e31; e33 and e15 are the piezoelectric
constants, Er ;Ey and Ez are the electric field intensities in the radial, tangential and transverse direction, respectively. These
are given by

Er ¼�
qf
qr
; Ey ¼�

qf
rqy

; Ez ¼�
qf
qz
; (6a2c)

where f is the electric potential at any point of the piezoelectric layers. The corresponding electric displacements Dr ;Dy
and Dz are given by

Dr ¼ e15erzþX11Er ;

Dy ¼ e15eyzþX11Ey;

Dz ¼ e31ðerþeyÞþX33Ez; (7a2c)

where X33 is the reduced dielectric constant, X11 and X33 are the dielectric constants, all of the piezoelectric layer, and
X11 ¼X11;X33 ¼X33þe2

33=CE
33.

For free vibration analysis, a sinusoidal variation of the electrical potential in the transverse direction proposed by Liu
et al. [20] and Duan et al. [21] is assumed, so that the potential function is written as

f¼
jðr; y; tÞsin

pðz�hÞ

hp

� �
; hrzrhþhp;

jðr; y; tÞsin
pð�z�hÞ

hp

� �
; �h�hprzr�h;

8>>><
>>>:

(8)

where jðr; y; tÞ is the electric potential on the mid-surface of the piezoelectric layer.

2.3. Basic equations

The resultant moments and shear forces can be expressed as follows:

Mi ¼

Z h

�h
sh

i z dzþ2

Z hþhp

h
sE

i z dz; i¼ r; y; ry;

Qi ¼

Z h

�h
sh

iz dzþ2

Z hþhp

h
sE

iz dz; i¼ r;y; (9a,b)

by substituting Eqs. (1)–(8) into (9a,b), the resultant bending moments, twisting moments and transverse shear forces, all
per unit length in terms of cr ;cy;w and j are written as

Mr ¼ ðD1þD2Þ
qcr

qr
þðD1þD2�2A1Þ

cr

r
þ

qcy
rqy

� �
�S1

q2w

qr2
þ

qw

rqr
þ

q2w

r2qy2

 !
þS2

q2w

qr2
�

4

phpe31j;

My ¼ ðD1þD2�2A1Þ
qcr

qr
þðD1þD2Þ

cr

r
þ

qcy
rqy

� �
�S3

q2w

qr2
þ

qw

rqr
þ

q2w

r2qy2

 !
�S2

q2w

qr2
�

4

p hpe31j;

Mry ¼ A1
qcr

rqy
þ

qcy
qr
�
cy
r

� �
þS2

q2w

rqrqy
�

qw

r2qy

 !
;

Qr ¼ A2
qw

qr
þcr

� �
�

4

phpe15
qj
qr
;

Qy ¼ A2
qw

rqy
þcy

� �
�

4

phpe15
qj
rqy

; (10a2e)

where the unknown constants in the above equations are given in Appendix A.
By obtaining the strain and kinetic energies of an annular Reddy plate with integrated piezoelectric layers and applying

Hamilton principle, three equations of motion for dynamic behavior of a piezoelectric coupled annular Reddy plate can be
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found as follows

qMr

qr
þ

1

r

qMry

qy
þ

Mr�My

r
�Qrþc1

1

ðhþhpÞ
2

Rr�
1

3ðhþhpÞ
2

qPr

qr
þ

1

r

qPry

qy
þ

Pr�Py
r

� �" #
¼m3

€cr�c2m5
q €w
qr
;

qMry

qr
þ

qMy

rqy
þ

2Mry

r
�Qyþc1

1

ðhþhpÞ
2

Ry�
1

3ðhþhpÞ
2

qPry

qr
þ

1

r

qPy
qy

� �
�

2

3ðhþhpÞ
2

Pry

r

" #
¼m3

€cy�c2m5
1

r

q €w
qy

;

qQr

qr
þ

1

r

qQy

qy
þ

Qr

r
þc1

1

3ðhþhpÞ
2

q2Pr

qr2
þ

2

r

q2Pry

qrqy
þ

1

r2

q2Py

qy2

 !
þ

1

3ðhþhpÞ
2

2

r

qPr

qr
�

1

r

qPy
qr
þ

2

r2

qPry

qy

� �"

�
1

ðhþhpÞ
2

qRr

qr
þ

1

r

qRy

qy

� �
�

1

ðhþhpÞ
2

Rr

r

#
¼m1 €wþc1 m5

q €cr

qr
þ

1

r

q €cy
qy
þ
€cr

r

 !
�m7

q2 €w

qr2
þ

1

r

q €w
qr
þ

1

r2

q2 €w

qy2

 !" #
:

(11a2c)

These equations are similar to those obtained by Nosier and Reddy [15].
In the Reddy’s theory the tracers c1 and c2 are set equal to 1. The coefficients m1;m3;m5 and m7 are defined as

ðI1; I2; I3; I4; I5; I7Þ ¼

Z h

�h
rð1; z; z2; z3; z4; z6Þdzþ2

Z hþhp

h
rpð1; z; z

2; z3; z4; z6Þdz;

m1 ¼ I1; m3 ¼ I3�
2

3ðhþhpÞ
2

I5þ
1

9ðhþhpÞ
4

I7;

m5 ¼
1

3ðhþhpÞ
2

I5�
1

3ðhþhpÞ
2

I7

 !
; m7 ¼

1

9ðhþhpÞ
4

I7; (12a2e)

in which, r and rp are the material densities of the host material and piezoelectric layer, respectively. The equations of
motion of the plate according to FSDT are also obtained by letting c1 ¼ c2 ¼ 0, m1 ¼ I1 and m3 ¼ I3 in Eqs. (11a–c).

Levinson’s theory obtained by taking c1 ¼ 0 and c2 ¼ 1 in Eqs. (11a–c) and coefficients m1;m3 and m5 are defined as

m1 ¼ I1; m3 ¼ I3�
1

3ðhþhpÞ
2

I5; m5 ¼
1

3ðhþhpÞ
2

I5; (13a2c)

therefore, the governing equation of motion for the Levinson plate in absence of the applied load and assumption of the
free harmonic motion in terms of the stress resultants are given by

qMr

qr
þ

1

r

qMry

qy
þ

Mr�My

r
�Qr ¼ I3

€cr�
1

3ðhþhpÞ
2

I5
q €w
qr
;

qMry

qr
þ

qMy

rqy
þ

2Mry

r
�Qy ¼ I3

€cy�
1

3ðhþhpÞ
2

I5
1

r

q €w
qy

;

qQr

qr
þ

1

r

qQy

qy
þ

Qr

r
¼ I1 €w; (14a2c)

where

I3 ¼ I3�
1

3ðhþhpÞ
2

I5; (15)

substituting Eqs. (10a–e) into (14a–c) gives three partial differential equation, namely

ðD1þD2Þ
q2cr

qr2
þ

qcr

rqr
�
cr

r2
þ

q2cy
rqrqy

�
qcy
r2qy

 !
þA1

q2cr

r2qy2
�

qcy
r2qy
�

q2cy
rqrqy

 !
�A2

qw

qr
þcr

� �
þA3

qj
qr
�S3

qðDwÞ

qr
¼ I3

€cr�
1

3ðhþhpÞ
2

I5
q €w
qr
;

ðD1þD2Þ
q2cr

rqrqy
þ

q2cy

r2qy2
þ

qcr

r2qy

 !
þA1 �

q2cr

rqrqy
þ

qcr

r2qy
þ

q2cy
qr2
�
cy
r2
þ

qcy
rqr

 !
�A2

qw

rqy
þcy

� �
þA3

qj
rqy
�S3

qðDwÞ

rqy
¼ I3

€cy�
1

3ðhþhpÞ
2

I5
1

r

q €w
qy

;

A2DwþA2
qcr

qr
þ

qcy
rqy
þ
cr

r

� �
�

4

p
hpe15Dj¼ I1 €w; (16a2c)

where D is the Laplace operator in the polar coordinate given by

D¼
q2

qr2
þ

q
rqr
þ

q2

r2qy2
: (17)
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Note that all of the electrical variables primarily must satisfy Maxwell’s equation which requires that the divergence of the
electric flux density vanishes at any point within the media. This condition can be satisfied approximately by enforcing the
integration of the electric flux divergence across the thickness of the piezoelectric layers to be zero for any r and
y as Z hþhp

h

qðrDrÞ

rqr
þ

qDy

rqy
þ

qDz

qz

� �
dz¼ 0; (18)

substituting Eqs. (7a–c) into above equation and simplifying the result gives

qcr

qr
þ

qcy
rqy
þ
cr

r

� �
þA4Dw�A5DjþA6j¼ 0; (19)

where the unknown constants in the above equations are given in Appendix A.

3. Analysis of a piezoelectric coupled annular plate

3.1. Determination of the transverse displacement (w)

In order to solve four complex differential equations of motion, following steps must be taken so that Eqs. (16a–c) and
(19) become uncoupled:
1.
 Eq. (16a) is first differentiated with respect to r.

2.
 Eq. (16a) is divided by r.

3.
 Eq. (16b) is first differentiated with respect to y and then divided by r.

4.
 An auxiliary function is defined as

C¼
qcr

qr
þ

1

r

qcy
qy
þ
cr

r
: (20)

If three equations obtained from steps (1) and (2) and (3) are added together, we will obtain
5.
ðD1þD2ÞDC�A2Dw�A2CþA3Dj�S3DDw¼ I3
€C�

1

3ðhþhpÞ
2

I5D €w; (21)

Eqs. (16c) and (19) must be rewritten by using Eq. (20) as
6.
A2DwþA2C�
4

p hpe15Dj¼ I1 €w;

CþA4Dw�A5DjþA6j¼ 0; (22a,b)

The next step in the analysis is to eliminate the parameters C and j between Eqs. (21), (22a) and (22b). After some
7.

mathematical manipulation, the obtained equation is uncoupled from j, cr and cy.

An uncoupled sixth-order partial differential equation with constant coefficients is acquired in terms of w as follow

P1DDDwþP2DDD €wþP3DDwþP4DD €wþP5DDw
ð4Þ
þP6Dw

ð4Þ
þP7D €wþP8w

ð4Þ
þP9 €w ¼ 0; (23)

where the coefficients, P1, P2, P3, P4, P5, P6, P7, P8 and P9, are given in Appendix A.
The solution of wðr; y; tÞ for wave propagation in the circumferential direction can be written as

wðr; y; tÞ ¼wðrÞcosðpyÞexpðiotÞ; (24)

where wðrÞ is the amplitude of the z-direction displacement as a function of radial distance only; o is the natural frequency
of the plate; and non-negative integer p represents the circumferential wave number of the corresponding mode shape.
Rewriting Eq. (23) in terms of wðrÞ and canceling the expðiotÞ term gives a differential equation, namely

ðP1�P2o2ÞDDDwþðP3�P4o2þP5o4ÞDDwþðP6o4�P7o2ÞDwþðP8o4�P9o2Þw ¼ 0; (25)

where the operator D is given by

D ¼
q2

qr2
þ

q
rqr
�

p2

r2
: (26)

Transforming Eq. (25) into the form

ðD�x1ÞðD�x2ÞðD�x3Þw ¼ 0; (27)

where x1, x2 and x3 are the three roots of the following cubic equation:

ðP1�P2o2Þx3þðP3�P4o2þP5o4Þx2þðP6o4�P7o2ÞxþðP8o4�P9o2Þ ¼ 0: (28)
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The general solution to Eq. (25) may be expressed as

w ¼w1þw2þw3; (29)

in which wi ði¼ 1;2;3Þ are obtained by three different kinds of Bessel’s equations as follow

ðD�x1Þw1 ¼ 0;

ðD�x2Þw2 ¼ 0;

ðD�x3Þw3 ¼ 0; (30a2c)

the second order term of Eq. (28) can easily be eliminated by using the following transformation

x¼ y�ðP3�P4o2þP5o4Þ=3ðP1�P2o2Þ; (31)

thus, Eq. (28) reduced to

y3þbyþc¼ 0; (32)

where

b¼
P6o4�P7o2

P1�P2o2
�
ðP3�P4o2þP5o4Þ

2

3ðP1�P2o2Þ
2

; (33a)

c¼
P8o4�P9o2

P1�P2o2
�
o2ðP3�P4o2þP5o4ÞðP6o2�P7Þ

3ðP1�P2o2Þ
2

þ
2ðP3�P4o2þP5o4Þ

3

27ðP1�P2o2Þ
3

: (33b)

It is well know that the discriminant of a third-order equation can be expressed as

Z¼ c

2

� �2

þ
b

3

� �3

; (34)

the parameter Z practically takes negative values ðZo0Þ. Therefore, based on Cardano’s formula [24], three distinct real
roots of Eq. (28) are given by

x1 ¼ 2S cos
g
3
�

P3�P4o2þP5o4

3ðP1�P2o2Þ
;

x2 ¼ 2S cos
gþ2p

3
�

P3�P4o2þP5o4

3ðP1�P2o2Þ
;

x3 ¼ 2S cos
gþ4p

3
�

P3�P4o2þP5o4

3ðP1�P2o2Þ
; (35a2c)

where

S¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3�P4o2þP5o4Þ

2
�3ðP1�P2o2ÞðP6o4�P7o2Þ

ðP1�P2o2Þ
2

s
; g¼ arccos �

c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b

3

� �3
s

2
66664

3
77775: (36a,b)

Therefore, the solution of Eq. (25) can be expressed as

wðrÞ ¼
X3

i ¼ 1

½ciwi1ðp;wirÞþciþ3wi2ðp;wirÞ�; (37)

where

wi ¼
ffiffiffiffiffiffiffi
jxij

p
; (38)

and

wi1ðp;wirÞ ¼
JpðwirÞ; xio0;

IpðwirÞ; xi40;
i¼ 1;2;3;

(

wi2ðp;wirÞ ¼
YpðwirÞ; xio0;

KpðwirÞ; xi40;
i¼ 1;2;3;

(
(39a,b)

in which Jp and Yp are Bessel functions of the first and second kind, respectively, Ip and Kp are modified Bessel functions of
the first and second kind, respectively and ci ði¼ 1;2; . . . ;6Þ are constants of integration.
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3.2. Determination of electric potential in the piezoelectric layer

The solution of jðr; y; tÞ for wave propagation in the circumferential direction can be written as

jðr; y; tÞ ¼jðrÞ cos ðpyÞ exp ðiotÞ; (40)

substituting Eqs. (40) and (24) into (21), (22a) and (22b), eliminating C from these equations; and canceling the expðiotÞ

term give a relation between jðrÞ and wðrÞ, namely

j ¼ K2

K1
DDwþ

K3

K1
Dwþ

K4

K1
w; (41)

where the coefficients, K1, K2, K3 and K4, are given in Appendix A.
From Eqs. (30a–c) we can write following equations:

DDwi ¼ x2
i wi; Dwi ¼ xiwi; i¼ 1;2;3 (42a,b)

the electric potential can be expressed as follows by substituting Eq. (42) into (41):

jðrÞ ¼
X3

i ¼ 1

LiwiðrÞ; (43)

where

Li ¼
K2

K1
x2

i þ
K3

K1
xiþ

K4

K1
; i¼ 1;2;3: (44)

3.3. Determination of cr and cy

In order to determine the slope rotations cr and cy, the following forms are initially considered

cr ¼ a1
qw1

qr
þa2

qw2

qr
þa3

qw3

qr
þa4

qw4

rqy
;

cy ¼ b1
qw1

rqy
þb2

qw2

rqy
þb3

qw3

rqy
þb4

qw4

qr
; (45a,b)

where ai; bi ði¼ 1;2;3;4Þ are unknown coefficients. The function w4 is also unknown and must be determined. The
unknowns ai;bi and w4 can be obtained as follows by substituting Eqs. (45a,b) into (16a–c):

ai ¼ bi ¼

A2þ
I5o2

3ðhþhpÞ
2
�A3LiþS3xi

I3o2�A2þðD1þD2Þxi

; i¼ 1;2;3; a4 ¼ 1; b4 ¼�1 (46a2d)

and the function w4 take the following form

w4ðr; y; tÞ ¼w4ðrÞsinðpyÞexpðiotÞ;

w4ðrÞ ¼ c7w41ðp;w4rÞþc8w42ðp;w4rÞ; (47a,b)

where

x4 ¼
A2�I3o2

A1
;

w4 ¼
ffiffiffiffiffiffiffiffi
jx4j

p
;

w41ðp;w4rÞ ¼
Jpðw4rÞ; x4o0;

Ipðw4rÞ; x440;

(

w42ðp;w4rÞ ¼
Ypðw4rÞ; x4o0;

Kpðw4rÞ; x440:

(
(48a2d)

If the plate is insulated at the edge, the electrical flux conservation equation is given byZ hþhp

h
Drðr; y; tÞdz¼ 0; (49)
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substituting Eq. (7a) into (49) yields the electric boundary condition

hpð3hþ2hpÞe15

ðhþhpÞ
2

crþ
qw

qr

� �
�

6X11

p
qj
qr
¼ 0: (50)

The standard boundary conditions for the clamped and simply supported (hard and soft types) ends are given respectively
as follows:
(1)
Tabl
Mate

Pr

Yo

Po

M

e31

e33

e15

X1

X3
Clamped

wðr1; y; tÞ ¼crðr1; y; tÞ ¼cyðr1;y; tÞ ¼
hpð3hþ2hpÞe15

ðhþhpÞ
2

crþ
qw

qr

� �
�

6X11

p
qj
qr

" #
r ¼ r1

¼ 0;

wðr0; y; tÞ ¼crðr0; y; tÞ ¼cyðr0; y; tÞ ¼
hpð3hþ2hpÞe15

ðhþhpÞ
2

crþ
qw

qr

� �
�

6X11

p
qj
qr

" #
r ¼ r0

¼ 0: (51a2h)

Simply supported (hard type)
(2)
wðr1; y; tÞ ¼cyðr1; y; tÞ ¼Mrðr1; y; tÞ ¼
hpð3hþ2hpÞe15

ðhþhpÞ
2

crþ
qw

qr

� �
�

6X11

p
qj
qr

" #
r ¼ r1

¼ 0;

wðr0; y; tÞ ¼cyðr0; y; tÞ ¼Mrðr0; y; tÞ ¼
hpð3hþ2hpÞe15

ðhþhpÞ
2

crþ
qw

qr

� �
�

6X11

p
qj
qr

" #
r ¼ r0

¼ 0: (52a2h)

Simply supported (soft type)
(3)
wðr1; y; tÞ ¼Mrðr1; y; tÞ ¼Mryðr1;y; tÞ ¼
hpð3hþ2hpÞe15

ðhþhpÞ
2

crþ
qw

qr

� �
�

6X11

p
qj
qr

" #
r ¼ r1

¼ 0;

wðr0; y; tÞ ¼Mrðr0; y; tÞ ¼Mryðr0; y; tÞ ¼
hpð3hþ2hpÞe15

ðhþhpÞ
2

crþ
qw

qr

� �
�

6X11

p
qj
qr

" #
r ¼ r0

¼ 0: (53a2h)

It should be noted that at the edge of the plate with hard simply supported boundary condition, normal to mid-plane
cannot rotate in the z�y plane, therefore cy is equal to zero at the plate edge. According to the displacement field as cy
becomes zero, the edge of the plate will be constrained in circumferential direction, while the edge of the plate with
soft simply supported boundary condition can move in circumferential directions.
Natural frequencies of annular plates can be calculated by using above boundary condition. Closed-form characteristic
equations of annular plates under different boundary conditions are given in detail in Appendix B

4. Comparison studies

For convenience of notation, an annular plate is described by a symbolism defining the boundary conditions at their
edges, For example, C–S denotes an annular plate with clamped edge on the inner radius and simply supported (soft type)
on the outer radius. It should be noted that in this paper soft simply supported and hard simply supported boundary
conditions are denoted by S and S*, respectively and the material properties are listed in Table 1.

For verification of the present formulation, a comparison study of the results for thick annular plates without
piezoelectric layer for F–F, F–S, and F–C boundary conditions is made with the results from Mindlin theory given by Irie
e 1
rial properties.

operty Host structure PZT4 PIC-151 PZT(NEPEC6)

ung’s modulus (Gpa) CE
11 ¼ 132 CE

12 ¼ 71 CE
11 ¼ 107:6 CE

12 ¼ 63:13 CE
11 ¼ 139 CE

12 ¼ 77:8

E¼ 200 CE
33 ¼ 115 CE

13 ¼ 73 CE
33 ¼ 100:4 CE

13 ¼ 63:86 CE
33 ¼ 115 CE

13 ¼ 74:3

CE
55 ¼ 26 CE

55 ¼ 19:62 CE
55 ¼ 25:6

isson ratio 0.3 – – –

ass density (kg/m3) 7800 7500 7800 7600

ðC=m2Þ – �4.1 �9.52 �5.2

ðC=m2Þ – 14.1 15.14 15.1

ðC=m2Þ – 10.5 11.97 12.7

1 ðnF=mÞ – 7.124 9.837 6.463

3 ðnF=mÞ – 5.841 8.190 5.622
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Table 2

Comparison of non-dimensional frequencies ðl¼or2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rh=D

p
Þ of the moderately thick annular plates for different boundary conditions when r1=r0 ¼ 0:1

and h=r0 ¼ 0:15.

BCa Method Mode types ðp;nÞ

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

F–F Present 7.83486 26.6297 15.586 34.4198 4.81416 24.3429

Ref. [2] 7.83 26.58 15.7 34.62 4.81 24.12

Ref. [4] 7.8544 26.865 15.824 35.170 4.8172 24.403

Ref. [5]b 7.83027 26.57574 15.69685 34.62412 4.80672 24.12241

F–S* Present 4.54104 21.7132 11.5223 30.1501 19.0852 40.078

Ref. [2] 4.54 21.67 11.5 30.05 19.04 39.93

Ref. [4] 4.5572 21.933 11.602 30.565 19.279 40.757

Ref. [5]b 4.53849 21.66535 11.50426 30.05296 19.04346 39.93500

F–C Present 8.18546 24.1273 14.6602 31.7018 21.5359 41.1290

Ref. [2] 8.37 24.7 15.01 32.23 22.02 41.64

Ref. [4] 8.4771 25.203 15.274 32.982 22.461 42.734

Ref. [5]b 8.36584 24.70209 15.01476 32.23117 22.01586 41.64170

D=E(2h)3/12(1�n2) is flexural rigidity of host plate.
a Note: BC means Boundary Conditions.
b Shear correction factor=p2/12.

Table 3

Comparison of frequencies o (rad/s) of the piezoelectric coupled thin annular plates under different boundary conditions when h=r0 ¼ 1=60.

BC p n Present (LPT) IPT [21] FEM [22] Diff (%)

LPT and IPT LPT and FEM

C–C 0 0 2764.83 2769 2724 �0.15 1.50

1 7499.30 7517 7418 �0.24 1.10

2 14 383.1 14 428 14 289 �0.31 0.66

1 0 2894.71 2899 2853 �0.15 1.46

1 7724.79 7743 7642 �0.24 1.08

2 14 652.3 14 698 14 557 �0.31 0.65

2 0 3432.56 3438 3381 �0.16 1.52

1 8487.97 8507 8394 �0.22 1.12

2 15 520.4 15 566 15 416 �0.29 0.68

C–S 0 0 1821.69 1823 1790 �0.07 1.77

1 6058.15 6066 5967 �0.13 1.53

2 12 502.1 12 523 12 357 �0.17 1.17

1 0 1955.61 1957 1922 �0.07 1.75

1 6280.92 6289 6187 �0.13 1.52

2 12 773.3 12 794 12 625 �0.16 1.17

2 0 2493.81 2495 2448 �0.05 1.87

1 7042.74 7050 6934 �0.10 1.57

2 13 651.7 13 672 13 490 �0.15 1.20

S–C 0 0 2193.20 2194 2152 �0.04 1.91

1 6449.77 6455 6345 �0.08 1.65

2 12 918.6 12 934 12 755 �0.12 1.28

1 0 2396.72 2397 2352 �0.01 1.90

1 6770.0 6774 6663 �0.06 1.61

2 13 277.6 13 293 13 112 �0.12 1.26

2 0 3158.33 3159 3102 �0.02 1.82

1 7810.24 7815 7692 �0.06 1.54

2 14 412.5 14 428 14 243 �0.11 1.19

S–S 0 0 1388.45 1388 1358 0.03 2.24

1 5116.43 5115 5014 0.03 2.04

2 11 115.9 11 114 10 921 0.02 1.78

1 0 1584.45 1583 1551 0.09 2.16

1 5434.51 5433 5328 0.03 2.00

2 11 480.9 11 478 11 283 0.03 1.75

2 0 2307.54 2306 2260 0.07 2.10

1 6470.48 6468 6348 0.04 1.93

2 12 635.6 12 632 12 428 0.03 1.67

Sh. Hosseini Hashemi et al. / Journal of Sound and Vibration 329 (2010) 1390–1408 1399
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et al. [2], Efraim and Eisenberger [5], and with the 3-D elasticity analysis by Liew and Yang [4]. These are presented in
Table 2. The results are also listed in these tables for three circumferential wave numbers (p=0,1 and 2) while the first two
modes (n=0 and 1) are considered for each value of p. It is evident from Table 2 that the present solution is in good
agreement with these three references, and results obtained on the basis of the 3-D Ritz method [4] are greater than those
of the present LPT. This is attributed to the fact that natural frequencies by the Ritz method are upper bounds of the exact
ones.

An interesting comparison study of the natural frequencies of the present method with those of Duan et al. [21] using
the analytical solution based on the improved plate theory (IPT) and Liu et al. [22] using the finite element method are
listed in Tables 3 and 4. In these tables, two different thickness-radius ratios (h=r0 ¼ 1=60 and 1=20) are examined, which
correspond to thin and moderately thick plates, respectively. The material of host plate is steel and that of the piezoelectric
layer is PZT4. The inner radius ðr1Þ and outer radius ðr0Þ of the annular plate are 0.1 and 0.6 m, respectively. The thickness
ratio of the piezoelectric layer to the host plate is 1/10. The percentage difference given in Tables 3 and 4 is defined as
follows:

%Diff ¼
½ðLPTÞ�ðothers methodsÞ�

ðothers methodsÞ
� 100:

It is observed from Tables 3 and 4 that all results obtained on the basis of the present solution are always higher than
those of FEM [22] and also frequencies derived from present LPT are lower than those of the IPT [21] under all the four
boundary conditions except S–S. The agreement between the present results and those given by Duan et al. [21] is found to
be excellent. Good agreement is also achieved between the present results and those of Liu et al. [22]. It is worth noting
Table 4

Comparison of frequencies o (rad/s) of the piezoelectric coupled thick annular plates under different boundary conditions when h=r0 ¼ 1=20.

BC p n Present (LPT) IPT [21] FEM [22] Diff (%)

LPT and IPT LPT and FEM

C–C 0 0 7335.11 7416 7435 �1.09 �1.34

1 17 985.2 18 235 18 515 �1.37 �2.86

2 31 423.2 31 869 32 692 �1.40 �3.88

1 0 7644.76 7728 7746 �1.08 �1.31

1 18 530.3 18 774 19 050 �1.30 �2.73

2 32 035.2 32 468 33 291 �1.33 �3.77

2 0 9093.99 9169 9172 �0.82 �0.85

1 20 419.1 20 639 20 912 �1.07 �2.36

2 34 000.2 34 397 35 233 �1.15 �3.50

C–S 0 0 5030.66 5064 5031 �0.66 �0.01

1 15 376.7 15 500 15 531 �0.80 �0.99

2 28 967.1 29 201 29 489 �0.80 �1.77

1 0 5372.2 5406 5369 �0.63 0.06

1 15 933.8 16 048 16 070 �0.71 �0.85

2 29 608.8 29 827 30 104 �0.73 �1.64

2 0 6886.9 6907 6838 �0.29 0.72

1 17 903.1 17 986 17 978 �0.46 �0.42

2 31 678.7 31 854 32 110 �0.55 �1.34

S–C 0 0 6107.77 6125 6045 �0.28 1.04

1 16 445.5 16 536 16 469 �0.55 �0.14

2 29 993.5 30 197 30 325 �0.67 �1.09

1 0 6537.33 6555 6479 �0.27 0.90

1 17 077.1 17 172 17 126 �0.55 �0.29

2 30 616.2 30 826 31 000 �0.68 �1.24

2 0 8495.33 8528 8470 �0.38 0.30

1 19 338.7 19 453 19 496 �0.59 �0.81

2 32 729.5 32 959 33 291 �0.70 �1.69

S–S 0 0 4002.60 3997 3912 0.14 2.32

1 13 784.9 13 775 13 547 0.07 1.76

2 27 430.3 27 430 27 117 0.00 1.16

1 0 4457.99 4450 4361 0.18 2.22

1 14 452.4 14 443 14 223 0.07 1.61

2 28 098.2 28 102 27 822 �0.01 0.99

2 0 6437.99 6433 6332 0.08 1.67

1 16 861.2 16 859 16 688 0.01 1.04

2 30 365.6 30 385 30 222 �0.06 0.48
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that the discrepancy of the frequencies between the present results and those by the IPT [21] is greater for larger n

(number of nodal circles) except S–S and in comparison with FEM [22] in Table 3 this trend is vice versa.
5. Results and discussion

In this section, natural frequencies of the piezoelectric coupled annular plates are presented in tabular and graphical
forms for different plate and piezoelectric parameters. In all the computations, unless otherwise stated, the outer radius is
0.6 m and the material for the host plate is steel and that of the piezoelectric layer is PZT4 which their properties are listed
in Table 1.
5.1. Effect of the plate parameters on the natural frequency

The frequencies o (rad/s) of annular Levinson plates with three combinations of boundary conditions (C–C, S*–S* and
S–S) and thickness to radius ratios (h=r0 ¼ 1=60;1=30 and 1=10) are listed in Table 5. Furthermore, in Table 6, a similar
analysis of the frequencies o (rad/s) is carried out for C–S*, C–S and S–C of annular Levinson plates with three different
thickness to radius ratios (h=r0 ¼ 1=30;1=20 and 1=10).

In these tables, two different inner–outer radius ratios r1=r0 ¼ 0:1 and 0:5 are examined. It is obvious from Tables 5 and
6 that regardless of the boundary conditions at the plate edges, the natural frequencies o increases as the thickness to
radius ratio h=r0 or/and inner–outer radius ratio r1=r0 increases. As expected, the natural frequencies increases as the
Table 5
Frequencies o (rad/s) of annular plates under C–C, S*–S* and S–S boundary conditions with piezoelectric layers when h/hp=5.

P n h=r0 ¼ 1=60 h=r0 ¼ 1=30 h=r0 ¼ 1=10

r1=r0 ¼ 0:1 r1=r0 ¼ 0:5 r1=r0 ¼ 0:1 r1=r0 ¼ 0:5 r1=r0 ¼ 0:1 r1=r0 ¼ 0:5

C–C annular plates

0 0 2307.71 7364.11 4420.91 13 278.4 9734.19 23 131.2

1 6277.50 19 432.0 11 573.0 32 150.1 21 961.8 47 502.6

2 12 109.0 36 155.0 21 418.0 55 625.1 36 781.2 77 399.8

3 19 598.2 56 396.0 33 226.6 81 769.5 52 878.7 83 993.8

1 0 2438.91 7441.16 4653.35 13 405.5 10 465.7 23 355.8

1 6538.08 19 536.0 12 045.8 32 315.0 23 388.4 47 833.3

2 12 445.2 36 262.1 22 020.1 55 784.2 38 293.0 77 637.8

3 19 983.8 56 500.4 33 905.1 81 917.2 54 308.7 84 871.8

2 0 3091.16 7685.73 5930.91 13 816.3 13 680.7 24 137.9

1 7516.62 19 851.5 13 897.5 32 817.0 27 497.1 48 822.7

2 13 618.5 36 585.1 24 155.7 56 264.4 42 522.2 78 375.3

3 21 277.0 56 814.2 36 170.0 82 361.1 58 356.4 87 339.0

S*–S* annular plates

0 0 1237.67 3407.83 2437.22 6637.41 6367.01 16 163.6

1 4389.80 13 162.7 8460.41 24 098.7 19 414.3 45 505.2

2 9454.90 28 417.3 17 643.0 48 306.9 35 328.6 76 769.5

3 16 316.5 48 076.4 29 297.2 76 128.8 52 313.6 78 937.7

1 0 1433.14 3555.79 2822.76 6918.62 7476.37 16 751.4

1 4786.79 13 317.0 9211.21 24 360.3 21 070.3 45 883.3

2 9973.83 28 563.6 18 566.4 48 525.9 36 956.9 77 034.1

3 16 899.1 48 211.1 30 264.9 76 310.3 53 773.3 79 066.9

2 0 2214.13 4001.41 4351.65 7762.13 11 273.3 18 477.5

1 6057.69 13 780.2 11 583.6 25 142.9 25 704.1 47 007.3

2 11 565.5 29 002.3 21 360.1 49 181.5 41 482.3 77 821.0

3 18 671.3 48 615.0 33 173.1 76 853.9 57 911.3 79 535.6

S–S annular plates

0 0 1237.67 3407.83 2437.22 6637.41 6367.01 16 163.6

1 4389.80 13 162.7 8460.41 24 098.7 19 414.3 45 505.2

2 9454.90 28 417.3 17 643.0 48 306.9 35 328.6 76 769.5

3 16 316.5 48 076.4 29 297.2 76 128.8 52 313.6 78 937.7

1 0 1408.48 3545.30 2728.27 6879.32 7029.45 16 542.3

1 4740.72 13 306.1 9050.67 24 325.1 20 600.3 45 760.0

2 9912.28 28 553.3 18 373.8 48 497.6 36 582.8 76 910.9

3 16 828.2 48 201.8 30 066.1 76 287.7 53 495.2 77 662.2

2 0 2192.66 3964.98 4276.11 7626.65 10 951.6 17 803.0

1 5999.11 13 738.7 11 396.6 25 009.6 25 215.9 46 562.1

2 11 456.9 28 962.3 21 046.9 49 071.7 40 888.9 77 427.9

3 18 514.8 48 578.4 32 766.2 76 765.3 57 280.6 77 847.6
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Table 6
Frequencies o (rad/s) of annular plate under C–S*, C–S and S–C boundary conditions with piezoelectric layers when h/hp=25.

p
n h=r0 ¼ 1=30 h=r0 ¼ 1=20 h=r0 ¼ 1=10

r1=r0 ¼ 0:1 r1=r0 ¼ 0:5 r1=r0 ¼ 0:1 r1=r0 ¼ 0:5 r1=r0 ¼ 0:1 r1=r0 ¼ 0:5

C–S* annular plates

0 0 2927.38 9379.51 4200.01 12 853.7 6979.96 18 804.5

1 9497.97 27 870.1 13 123.0 35 549.5 19 900.2 46 479.3

2 19 005.5 51 831.5 25 255.7 62 786.5 35 544.8 77 232.5

3 30 762.2 78 943.5 39 460.8 92 333.4 52 440.9 80 291.1

1 0 3170.13 9552.65 4550.06 13 088.0 7818.49 19 207.2

1 9960.61 28 060.0 13 813.5 35 792.5 21 410.9 46 830.0

2 19 614.4 52 009.9 26 160.9 63 003.3 37 172.3 77 503.2

3 31 458.1 79 103.9 40 459.4 92 518.2 53 931.5 84 413.2

2 0 44 14.43 10 098.0 64 14.20 13 831.6 11 322.7 20 467.7

1 11 809.6 28 637.3 16 495.2 36 530.9 25 843.9 47 880.8

2 21 796.9 52 547.5 29 210.1 63 655.1 41 677.6 78 311.3

3 33 796.9 79 585.6 43 598.5 93 072.4 58 135.5 83 624.2

C–S annular plates

0 0 2927.38 9379.51 4200.01 12 853.7 6979.96 18 804.5

1 9497.97 27 870.1 13 123.0 35 549.5 19 900.2 46 479.3

2 19 005.5 51 831.5 25 255.7 62 786.5 35 544.8 77 232.5

3 30 762.2 78 943.5 39 460.8 92 333.4 52 440.9 80 291.1

1 0 3163.43 9542.25 4535.80 13 067.2 7771.92 19 146.4

1 9955.27 28 052.7 13 803.0 35 779.9 21 383.6 46 803.1

2 19 609.7 52 004.1 26 152.4 62 993.7 37 152.3 77 431.4

3 31 454.1 79 099.2 40 452.5 92 510.6 53 914.7 80 800.4

2 0 4390.84 10 058.8 6364.60 13 754.3 11 172.5 20 253.7

1 11 789.5 28 608.5 16 456.4 36 481.8 25 749.1 47 777.1

2 21 779.3 52 524.6 29 178.7 63 617.7 41 607.0 78 077.3

3 33 781.5 79 567.2 43 572.6 93 042.4 58 073.4 82 031.6

S–C annular plates

0 0 3750.49 10 075.5 5402.73 13 863.2 9085.09 20 467.1

1 10 405.7 28 498.0 14 405.2 36 349.0 21 620.1 47 153.5

2 19 981.0 52 398.6 26 550.3 63 395.2 36 779.0 77 783.1

3 31 750.0 79 414.0 40 642.6 92 743.8 53 159.8 82 956.4

1 0 4058.98 10 269.4 5786.68 14 097.9 9650.30 20 712.9

1 11 011.7 28 696.1 15 165.1 36 577.6 22 760.9 47 428.9

2 20 698.9 52 572.8 27 410.6 63 586.2 37 967.1 77 862.7

3 32 495.3 79 564.8 41 504.8 92 903.7 54 329.9 83 992.4

2 0 5721.77 10 881.2 8154.09 14 854.8 13 399.6 21 608.9

1 13 372.0 29 296.8 18 295.4 37 274.2 27 071.5 48 275.8

2 23 306.8 53 097.5 30 658.5 64 164.0 42 085.2 78 291.4

3 35 101.6 80 018.5 44 597.2 93 386.1 58 067.0 85 611.8
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higher degrees of the edge constraint (in order from soft simply-supported to hard simply-supported to clamped) are
applied to the plate edges.
5.2. Effect of piezoelectric layer

Fig. 2 shows the behavior of the natural frequencies o (rad/s) as a function of thickness of piezoelectric layers for an
annular plate under C–S* boundary condition when r1=0.3 m, r0=1 m and h=0.05 m. According to Fig. 2, the higher natural
frequencies (i.e., modes (0, 1), (1, 1) and (2, 1)) initially decreases when the hp=h varies between 0 and 0.05, and then
increases when hp=h40:05. However, with the increase of the piezoelectric thickness, the lower natural frequencies (i.e.,
modes (0,0), (1,0) and (2,0)) continuously increases. Fig. 3 contains the plot of the fundamental frequency o1 (rad/s) versus
hp=h for the S–S annular Levinson plate (r1=0.5 m, r0=1 m and h=0.05 m) for three different common piezoelectric
materials (PZT (NECPEC6), PZT4 and PIC-151). It can be deduced from Fig. 3 that with the increase of the piezoelectric
thickness, the fundamental frequency for PZT and PZT4 increases monotonously, whereas for PIC-151 the fundamental
frequency initially diminishes and then increases with the enhancement of the hp=h. Duan et al. [21] reported that
increasing of piezoelectric thickness can increase or decrease the frequencies. Using thicker piezoelectric layers increases
bending stiffness of the plate that causes to enhance the frequencies, however the effect of piezoelectricity diminishes
frequencies. The behavior of PIC-151 in Fig. 3 arises from the fact that when thinner piezoelectric layers are used, the effect
of piezoelectricity is more dominant than that of plate stiffness. Another interesting point about Fig. 3 is that the increase
in frequency is smaller for PIC-151 than two others materials.
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Fig. 2. Variation of the frequencies o (rad/s) for an annular plate under C–S* boundary condition against the thickness of piezoelectric layers for different

modes when r1 ¼ 0:3 m, r0 ¼ 1 m and h¼ 0:05 m. mode(2,1); mode(1,1); mode(0,1); mode(2,0); mode(1,0); mode(0,0).
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5.3. Three-dimensional mode shapes

To have a more appropriate sense of the transverse displacement w, three first mode shapes of an annular Levinson
coupled piezoelectric plate, h=r0 ¼ 0:1, r1 ¼ 0:5, r0 ¼ 1 and hp=h¼ 0:05 are illustrated in Fig. 4 for C–C and C–S boundary
conditions, respectively.

6. Concluding remarks

In this paper, the free vibration of a three-layer piezoelectric laminated annular plate based on the Levinson plate
theory is investigated for the case where the electrodes on the piezoelectric layers are shortly connected. The electric
potential distribution across thickness of piezoelectric layer is modeled by a sinusoidal function and Maxwell equation is
enforced. Analytical solutions are presented and the closed-form characteristic equations, displacement field of the plate
and the electric potential are derived for the first time. Comparison studies proved that the present method is in good
agreement with other methods reported in the literature for different boundary conditions of the plate. Parametric studies
were devoted to the effects of the thickness-radius ratio, inner–outer radius ratio, thickness of piezoelectric and material of
piezoelectric on the natural frequencies of the piezoelectric coupled annular plate. Finally, some 3-D plots were shown for
the mode shapes of the annular Levinson plates. Due to the inherent features of the present solution, all findings will be a
useful benchmark for evaluating other analytical and numerical methods developed by researchers in the future.

Appendix A

Some coefficients referred to in this paper are given as follows:

ðA;B;C;D; F;GÞ ¼

Z h

�h
Eð1; z; z2; z3; z4; z6Þdz; (A.1)

t1 ¼
2
3 ½ðhþhpÞ

3
�h3�; t2 ¼

2
5½ðhþhpÞ

5
�h5�; (A.2,3)

D1 ¼
C

1�n2
�

F

3ðhþhpÞ
2
ð1�n2Þ

; D2 ¼ C 11t1�
C 11t2

3ðhþhpÞ
2
; (A.3,4)

S1 ¼
Fn

3ðhþhpÞ
2
ð1�n2Þ

þ
C 12t2

3ðhþhpÞ
2
; S2 ¼

Fðn�1Þ

3ðhþhpÞ
2
ð1�n2Þ

þ
t2ðC 12�C 11Þ

3ðhþhpÞ
2
;
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Fig. 3. The fundamental frequency o1 (rad/s) for an annular plate under S–S boundary condition with different piezoelectric materials versus the

thickness of piezoelectric layer for r1 ¼ 0:5 m, r0 ¼ 1 m and h¼ 0:05 m. PZT (NECPEC6); PZT4; PIC-151.

C-C S-C

13882.5 (0, 0) 12277.7 (0, 0)

14018.3 (1, 0) 12424.3 (1, 0)

14490.2 (2, 0) 12959.8 (2, 0)

15430.1 (3, 0) 14060.7 (3, 0)

Fig. 4. Deformed mode shapes and frequencies (rad/s) of annular plate under C–C and C–S boundary conditions (h=r0 ¼ 0:1, r1 ¼ 0:5, r0 ¼ 1 and

hp=h¼ 0:05).
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S3 ¼
F

3ðhþhpÞ
2
ð1�n2Þ

þ
C 11t2

3ðhþhpÞ
2
; (A.427)

A1 ¼
1

2
ð1�nÞD1þ 1�

C 12

C 11

 !
D2

" #
;

A2 ¼
A

2ð1þnÞ
�

C

2ðhþhpÞ
2
ð1þnÞ

þ2C55hp�
C55t1

ðhþhpÞ
2

 !
; A3 ¼

4hp

p
ðe15�e31Þ

A4 ¼ 1�
e31hp

ðe15þe31Þ hp�
t1

2ðhþhpÞ
2

 ! ; A5 ¼
2X11hp

pðe15þe31Þ hp�
t1

2ðhþhpÞ
2

 !;

A6 ¼
2X33p

hpðe15þe31Þ hp�
t1

2ðhþhpÞ
2

 ! ; A7 ¼
I5

3ðhþhpÞ
2
; A8 ¼

4

p
hpe15; (A.8215)

P1 ¼
�A2A5ðD1þD2þS3ÞþA8ðA4ðD1þD2ÞþS3Þ

A6ðA3�A8Þ
; (A.16)

P2 ¼
A5A7S3

A3A6�A6A8
; (A.17)

P3 ¼
A2ðA3ðA4�1ÞþA8�A4A8þA6ðD1þD2þS3ÞÞ

A6ðA3�A8Þ
; (A.18)

P4 ¼
�A3A4A7þA5ðD1þD2ÞI1�A4A8I3þA2A5ð2A7þ I3Þ�A7ðA8þA6S3Þ

A6ðA3�A8Þ
; (A.19)

P5 ¼
A5A2

7

A6ðA8�A3Þ
; (A.20)

P6 ¼
A6A2

7�A5I1I3

A3A6�A6A8
; (A.21)

P7 ¼
ðA3�A6ðD1þD2ÞÞI1�A2ðA5I1þA6ð2A7þ I3ÞÞ

A6ðA3�A8Þ
; (A.22)

P8 ¼
I1I3

A3�A8
; (A.23)

P9 ¼
I1A2

A3�A8
; (A.24)

K1 ¼
1

ðA2A5�A8þA5A7o2Þ
2
ðA6ðA

2
2A5ðA3�A8Þþo2ðA3A7ðA5A7o2�A8ÞþA8ðA6A7ðD1þD2Þ�A8I3þA5A7I3o2ÞÞ

þA2ð�A3ðA8�2A5A7o2ÞþA8ðA8þA6ðD1þD2ÞþA5ðI3�A7Þo2ÞÞÞÞ; (A.25)

K2 ¼ S3þ
ðA2A5�A4A8ÞðD1þD2Þ

A2A5�A8þA5A7o2
; (A.26)

K3 ¼ A2�A2A4þA7o2þA4I3o2þ
ðA2ðA4�1ÞþA4A7o2Þð�A3þA2A5þA6ðD1þD2Þ�A5I3o2Þ

A2A5�A8þA5A7o2

þ
1

ðA2A5�A8þA5A7o2Þ
2
ðA5ðD1þD2Þð�A2

2ðA4�1ÞA6þð�A8I1þA2ðð1�2A4ÞA6A7þA5I1ÞÞo2

þA7ð�A4A6A7þA5I1Þo4ÞÞ; (A.27)

K4 ¼
1

ðA2A5�A8þA5A7o2Þ
2
ðI1o2ð�A2

2A2
5þA6A8ðD1þD2ÞþA3ðA5A7o2�A8ÞþA5I3o2ðA5A7o2�A8ÞþA2A5ðA3þA8þA5ðI3�A7Þo2ÞÞÞ:

(A.28)
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Appendix B

There exists closed-form solutions to the characteristic equations of annular plate under all possible combinations of
soft simply supported, hard simply supported and clamped boundary conditions.

Substituting Eqs. (10), (37), (45) and (50) into boundary conditions, given by Eqs. (51)–(53), yields an eighth-order
determinant for the frequency parameters o. For the sake of clarity, the determinant will not be expanded and the
characteristic equations are represented in a matrix form. First four rows of the 8�8 matrix are related to the boundary
conditions at the inner edge, while second ones are related to those at the outer edge. Thus, the 8�8 matrix is divided into
two 4�8 sub-matrices corresponding to boundary conditions at the inner and outer edges of the plate. Following sub-
matrices are given for clamped, hard simply supported and soft simply supported boundary conditions:

Case 1. Clamped annular plates

A¼

w11ðw1rÞ w12ðw1rÞ w21ðw2rÞ w22ðw2rÞ w31ðw3rÞ w32ðw3rÞ 0 0

a1w11
0 ðw1rÞ a1w12

0 ðw1rÞ a2w21
0 ðw2rÞ a2w22

0 ðw2rÞ a3w31
0 ðw3rÞ a3w32

0 ðw3rÞ
pw41ðw4rÞ

r

pw42ðw4rÞ

r
p

r
a1w11ðw1rÞ

p

r
a1w12ðw1rÞ

p

r
a2w21ðw2rÞ

p

r
a2w22ðw2rÞ

p

r
a3w31ðw3rÞ

p

r
a3w32ðw3rÞ w41

0 ðw4rÞ w42
0 ðw4rÞ

G1ðrÞ GG1ðrÞ G2ðrÞ GG2ðrÞ G3ðrÞ GG3ðrÞ G4ðrÞ GG4ðrÞ

������������

������������
;

(B.1)

where the prime (0) indicates the derivative with respect to the r; wijðp;wirÞ is concisely expressed as wijðwirÞ;
cosðpyÞeiot and sinðpyÞeiot are eliminated for the brevity and we have

GiðrÞ ¼ e15
phpð3hþ2hpÞ

3ðhþhpÞ
2

 !
ð1þaiÞ�2X11Li

 !
wi1
0 ðwirÞ; i¼ 1;2;3; (B.2)

G4ðrÞ ¼ e15
phpð3hþ2hpÞ

3ðhþhpÞ
2

 !
p

r
w41ðw4rÞ; (B.3)

GGiðrÞ ¼ e15
phpð3hþ2hpÞ

3ðhþhpÞ
2

 !
ð1þaiÞ�2X11Li

 !
wi2
0 ðwirÞ; i¼ 1;2;3; (B.4)

GG4ðrÞ ¼ e15
phpð3hþ2hpÞ

3ðhþhpÞ
2

 !
p

r
w42ðw4rÞ: (B.5)

Case 2. Hard simply supported annular plates

B¼

w11ðw1rÞ w12ðw1rÞ w21ðw2rÞ w22ðw2rÞ w31ðw3rÞ w32ðw3rÞ 0 0

m1ðrÞ mm1ðrÞ m2ðrÞ mm2ðrÞ m3ðrÞ mm3ðrÞ m4ðrÞ mm4ðrÞ
p

r
a1w11ðw1rÞ

p

r
a1w12ðw1rÞ

p

r
a2w21ðw2rÞ

p

r
a2w22ðw2rÞ

p

r
a3w31ðw3rÞ

p

r
a3w32ðw3rÞ w41

0 ðw4rÞ w42
0 ðw4rÞ

G1ðrÞ GG1ðrÞ G2ðrÞ GG2ðrÞ G3ðrÞ GG3ðrÞ G4ðrÞ GG4ðrÞ

�����������

�����������
;

(B.6)

where

miðrÞ ¼ ððD1þD2Þai�S1þS2Þwi1
00 ðwirÞþ ðD1þD2�2A1Þ

ai

r
�

S1

r

� �
wi1
0 ðwirÞ�

p2

r2
ðD1þD2�2A1Þaiþ

4

phpe31Li�
p2

r2
S1

� �
wi1ðwirÞ; i¼ 1;2;3;

(B.7)

m4ðrÞ ¼
2A1p

r
w41
0 ðrÞ�

w41ðrÞ

r

� �
; (B.8)

mmiðrÞ ¼ ððD1þD2Þai�S1þS2Þwi2
00 ðwirÞþ ðD1þD2�2A1Þ

ai

r
�

S1

r

� �
wi2
0 ðwirÞ

�
p2

r2
ðD1þD2�2A1Þaiþ

4

p
hpe31Li�

p2

r2
S1

� �
wi2ðwirÞ; i¼ 1;2;3; (B.9)

mm4ðrÞ ¼
2A1p

r
w42
0 ðrÞ�

w42ðrÞ

r

� �
; (B.10)



ARTICLE IN PRESS

Table B1
Closed-form characteristic equations for annular plates with different combination of boundary conditions in matrix forms.

Boundary conditions at inner edge Boundary conditions at outer edge

Soft simply supported Hard simply supported Clamped

Clamped Ajr ¼ r1

Cjr ¼ r0

" #
8�8

Ajr ¼ r1

Bjr ¼ r0

" #
8�8

Ajr ¼ r1

Ajr ¼ r0

" #
8�8

Hard simply supported Bjr ¼ r1

Cjr ¼ r0

" #
8�8

Bjr ¼ r1

Bjr ¼ r0

" #
8�8

Bjr ¼ r1

Ajr ¼ r0

" #
8�8

Hard simply supported Cjr ¼ r1

Cjr ¼ r0

" #
8�8

Cjr ¼ r1

Bjr ¼ r0

" #
8�8

Cjr ¼ r1

Ajr ¼ r0

" #
8�8
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Case 3. Soft simply supported annular plates

C ¼

w11ðw1rÞ w12ðw1rÞ w21ðw2rÞ w22ðw2rÞ w31ðw3rÞ w32ðw3rÞ 0 0

m1ðrÞ mm1ðrÞ m2ðrÞ mm2ðrÞ m3ðrÞ mm3ðrÞ m4ðrÞ mm4ðrÞ

a1ðrÞ aa1ðrÞ a2ðrÞ aa2ðrÞ a3ðrÞ aa3ðrÞ a4ðrÞ aa4ðrÞ

G1ðrÞ GG1ðrÞ G2ðrÞ GG2ðrÞ G3ðrÞ GG3ðrÞ G4ðrÞ GG4ðrÞ

���������

���������
; (B.11)

where

aiðrÞ ¼ ð2A1aiþS2Þ
p

r
wi1
0 ðwirÞ�

p

r2
wi1ðwirÞ

� �
; i¼ 1;2;3; (B.12)

a4ðrÞ ¼ A1
p2

r2
w41ðw4rÞþw41

00 ðw4rÞ�
w41
0 ðw4rÞ

r

� �
; (B.13)

aaiðrÞ ¼ ð2A1aiþS2Þ
p

r
wi2
0 ðwirÞ�

p

r2
wi2ðwirÞ

� �
; i¼ 1;2;3; (B.14)

aa4ðrÞ ¼ A1
p2

r2
w42ðw4rÞþw42

00 ðw4rÞ�
w42
0 ðw4rÞ

r

� �
: (B.15)

For each case, a closed-form solution can be obtained by setting the determinant of the matrices in Table B1 equal to
zero. Roots of the determinant are the natural frequencies of annular plates with specific boundary conditions at inner and
outer edges of annular plates for a given wave number.
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